Ownership
Category: Social and Cultural Issues
A number of issues arise with respect to ownership, analytics and artificial intelligence. One such issue relates to IP protection and analytics: should AI algorithms be patented? Should specific applications, such as "the classification of digital images, videos, audio or speech signals based on low-level features (e.g.edges or pixel attributes for images)," be protected (Iglesias, et.al.,2019:7)?
Additionally, "curated data libraries may or may not deserve IP protection on their own" (Ibid:9). As Kay, Korn & Oppenheim (2012) note, "Although raw activity data is unlikely to attract copyright, a type of IPR, collations of such data may attract database rights, another type of IPR, which can restrict uses of substantial amounts of this data; enhanced activity data may itself be in copyright and may well enjoy database rights as well." Moreover, an additional special case of ownership applies to data scraped from websites, as discussed above (Das, 2020)?
We can think of ethical responsibility for analytics and artificial intelligence under two headings: who gets the credit, and who takes the blame? The answers to each are not obvious. With respect to the first question: Who are the creators of AI-generated art — programmers or machines? (Canellis, 2019). We may want to say that it's the programmers. That's the precedent that was set when a court ruled that the human owner of a camera, not the monkey that took the photo, owned the copyright (Cullinane, 2018).
But what would we say about this: Damien Riehl and Noah Rubin "designed and wrote a program to record every possible 8-note, 12-beat melody and released the results — all 68+ billion melodies, 2.6 terabytes of data — into the public domain" (Kottke, 2020). What would we say if Disney had done it and copyrighted the melodies? On the other hand, if we do not grant copyright to AI-generated work, then how do we identify them? Michaux (2018) argues that it may be difficult to distinguish works generated by humans and by machines.
After analytics and AI master the art of creation, what role does that leave for humans? "Could humans essentially be blocked out of content creation by the pace of AI text generation and the resulting claims of copyright for every possible meaningful text combination? With the expansion of tools, matched with the increasing speed of processing and available storage, such a world isn't beyond comprehension" (Carpenter, 2020).
As a recent literature review cautions, "Before favouring one solution or another, further economic and legal research is needed to assess to what extent the creation of new rights is needed at all. Who is/will be producing AI-generated goods? How autonomous are inventive/creative machines? What impact might regulation have on the relevant stakeholders, including artistic and cultural workers? What are the consequences of protection or non-protection?" (Iglesias, et.al., 2019).
Examples and Articles
Digital Citizenship Toolkit
Have you ever wondered if your phone is listening to you? Do you ever look to the Internet for the answer to a question, and hours later, find that you are more confused than before? Have you argued with a friend or relative about a meme? Have you been tempted to share your own thoughts and feelings online, but resisted for fear of trolls? This book delves into these issues and more.
Direct Link
Who Gets Credit for AI-Generated Art?
"The recent sale of an artificial intelligence (AI)-generated portrait for $432,000 at Christie's art auction has raised questions about how credit and responsibility should be allocated to individuals involved and how the anthropomorphic perception of the AI system contributed to the artwork's success."
Direct Link
Do you have another example of Ownership? Suggest it here
- Course Outline
- Course Newsletter
- Activity Centre
- -1. Getting Ready
- 1. Introduction
- 2. Applications of Learning Analytics
- 3. Ethical Issues in Learning Analytics
- 4. Ethical Codes
- 5. Approaches to Ethics
- 6. The Duty of Care
- 7. The Decisions We Make
- 8. Ethical Practices in Learning Analytics
- Videos
- Podcast
- Course Events
- Your Feeds
- Submit Feed
- Privacy Policy
- Terms of Service