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Explainable Al
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substantial impact on an
individual’s life, unless it can
generate a full and satisfactory
explanation for the decisions it will

take.”

“Al in the UK: ready, willing and able?,” UK Parliament (House of Lords) Artificial
Intelligence Committee. https://publications.parliament.uk/pa/ld201719/Idselect/Idai/100/10002.htm
Cover image: https://www.softwebsolutions.com/resources/explainable-ai-for-business.html
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What Is An Explanation?

 Causality (An explanation is an assignment of causal responsibility)
* Internal and external causes
* Causal chains
* Necessary and sufficient conditions

* Product (an explanation is an answer to a why—question (van Fraassen))
* Based on presuppositions and alternative possibilities

* Abduction (inference to the best explanation (Pierce, Harman))
 Various criteria employed to choose among hypotheses

* Justification
* Observers can understand the reason for (e.g.) a decision

Miller, 2018 https://arxiv.org/pdf/1706.07269.pdf
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The Need for Explainable Al

* Transparency: we need explanations in terms, format and language
we can understand

e Causality: can the model also provide us with some explanation for
underlying phenomena?

* Bias: How can we ensure that the Al system isn’t biased?
* Fairness: Can we verify that decisions were made fairly?
e Safety: Can we be confident in the reliability of our Al system?

Hagras, 2018 https://www.researchgate.net/publication/328088140 Toward Human-
Understandable Explainable Al
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The Evolution of Machine Learning
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As machine learning evolves, it moves further and further away from
Explainability, but the public perception of Explainability hasn’t shifted

https://storage.googleapis.com/cloud-ai-whitepapers/Al%20Explainability%20Whitepaper.pdf
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What Is Explainability?

New Learning Techniques (today) Explainability
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Deep Explanation Interpretable Models Model Induction

Modified deep learning Techniques to learn more Techniques to infer an
technigues to learn structured, interpretable, explainable model from any

explainable features causal models model as a black box

Gunning, 2017, Explainable Al https://www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IlJCAI-
16%20DLA1%20WS. pdf
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eXplainable Al intended to address weaknesses of machine learning

https://www.darpa.mil/program/explainable-artificial-intellicence
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Explainable Al

“Explainable artificial intelligence (XAl) is a set of
processes and methods that allows human users
to comprehend and trust the results and output
created by machine learning algorithms.” It
describes:

« Why did you do that?

« Why not something else? * The model

* When do you succeed? e The expected impact

« When do you fail?

« When can I trust you? ° Potential biases

« How do I correct an error?

https://www.ibm.com/watson/explainable-ai
https://www.darpa.mil/program/explainable-artificial-intelligence
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https://www.ibm.com/blogs/research/2019/08/ai-explainability-360/
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Post-Hoc Systems

* “provide local explanations for a specific decision and (make)

it reproducible on demand”

e E.g. LIME (Local Interpretable Model-Agnostic Explanations) developed by
Ribeiro et al. (2016) based on “a class of potentially interpretable models,
such as linear models, decision trees, or rule lists”

» E.g. BETA (Black Box Explanations through Transparent Approximations)
“optimizing for fidelity to the original model and in-
terpretability of the explanation”

Holzinger, et.al., 2017 https://arxiv.org/pdf/1712.09923.pdf
Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should | trust you?
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Ante-Hoc Systems

o |2V | | ——0% ] ‘Glass-box’ approaches

AN AN AT (Holzinger etal,, 2017); “typical
N2 A S examples include linear

A NV regression, decision trees and

| Tha 3L eEE T S5 0L T fuzzy inference systems”
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Generative Model

Recognizes characters by generating an
explanation of how a new test character

might be created (i.e., the most probable .
sequence of strokes that would create that https://arxiv.org/pdf/1712.09923.pdf
character) Image: Gunning, 2017
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Boolean Classification Rules

“Boolean Classification Rules via Column Generation, is an accurate and
scalable method of directly interpretable machine learning” - IBM

......
..........

------------ The predictive decision rule for Federer defeat-
ing Murray in the 2013 Australian Open was:

e Win more than 59% of 4 to 9 shot rallies; and
e Win more than 78% of points when serving at
30-30 or Deuce; and

e 8% e Serve less than 20% of serves into the body.

2ND KEY | CONTINUE PROTECTING NICHOLS IN PUCKET;-W
BODY AUTOBODY 6 GLASS | 3 KEYS T0 THE GAME “

https://www.ibm.com/blogs/research/2019/08/ai-explainability-360/

Dmitry M. Malioutov & Kush R. Varshney , 2013, Exact Rule Learning via Boolean Compressed Sensing
http://proceedings.mir.press/v28/malioutovl3.pdf



https://www.ibm.com/blogs/research/2019/08/ai-explainability-360/
http://proceedings.mlr.press/v28/malioutov13.pdf

Contrastive Explanations Method
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https://www.ibm.com/blogs/research/2019/08/ai-explainability-360/
Jacovi, et.al., 2021 https://arxiv.org/pdf/2103.01378.pdf
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Interpreting Deep Neural Networks

 Annotated data Is
extremely difficult to
obtain

* Montavon et al. (2017
based on interpreting
the Iinput layer

Gr egoire Montavon, Wojciech Samek, and Klaus-Robert M uller. Methods for interpreting
and understanding deep neural networks. arXiv:1706.07979, 2017
Holzinger, et.al., 2017 https://arxiv.org/pdf/1712.09923.pdf
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Fuzzy Logic Approaches

The focus is on how humans think in an approximate rather than an
precise way.

* E.g. “if the distance to the car ahead is low and the road is slightly slippery
Then slow down. The numerical meanings of ‘low’, ‘close’ and ‘slow down’
will differ between drivers.”
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Hagras, 2018 https://www.researchgate.net/publication/328088140 Toward Human-
Understandable Explainable Al
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Al Explainability Taxonomy

One-shot static or interactive explanations?
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Example From [BM

AI Explainability 360 - Demo

O O O

Data Consumer Explanation

Choose a consumer type

@  Data Scientist
must ensure the model works appropriately before deployment

O

Loan Officer
needs to assess the model's prediction and make the final judgement

o el
L

- ﬁ Bank Customer
—a,

wants to understand the reason for the application result

https://aix360.mybluemix.net/consumer
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Insights from the Social Sciences

* How do we explain behaviours? Determine intsntionality of behavior

* Intentions and intentionality — |
“person perception”

* Folk psychology — beliefs, desires, etc.

if unintentional if intentional ‘

* Reason expectations oftercause | [ offer £ | [ offerreason | [ offer chA

e Norms and morals |

* Collective intelligence belief ‘ desire

* Malle’s Models

* Information requirements, information — marked | (| marked \
access, pragmatics goals, functional

capacities —— unmarked | '~ unmarked \

Miller, 2018 https://arxiv.org/pdf/1706.07269.pdf
B. F. Malle, How the mind explains behavior: Folk explanations, meaning, and social interaction, MIT Press, 2004.
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Factors in Explanation

 Abnormality
* Temporality
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e Social norms [raaressive} = prictes

* Facts and Foils

* Responsibility

* Coherence, simplicity and generality
* Truth and probability
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Paul Thagard and Ziva Kunda,
1997 Making sense of people:
coherence mechanisms
http://cogsci.uwaterloo.ca/Arti
cles/Pages/Making.Sense.html
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Explanation as Conversation

* Two stages:

* the diagnosis of causality in which the explainer determines why an
action/event occurred; and

* the explanation, which is the social process of conveying this to someone.

* The problem is then to “resolve a puzzle in the explainee’s mind
about why the event happened by closing a gap in his or her
knowledge”

Miller, 2018 https://arxiv.org/pdf/1706.07269.pdf
D. J. Hilton, Conversational processes and causal explanation, Psychological Bulletin 107 (1) (1990) 65-81.
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Domains of Discourse

Engineering Deployment Governance

Ensure efficacy Explain its rationale Promote trust

Improve control Characterize strengths and Protect against bias
Improve weaknesses Follow regulations and
performance Inform future expectations policies

Discover Promote human-machine Enable human agency
information cooperation

Ultimately, what will count as an explanation will depend more on who
is doing the asking and explaining than on any inherent property of the
system

https://www.brookings.edu/techstream/explainability-wont-save-ai/



https://www.brookings.edu/techstream/explainability-wont-save-ai/

